

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level in Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024 Question Paper Log Number P74322A Publications Code WST02_01_2401_MS All the material in this publication is copyright © Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation. To earn the M mark, the equation (i) should have the correct number of terms (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - \circ the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark

- isw means ignore subsequent working
- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- L means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Number	Scheme						
1 (a)	[Mean	=] 2.95	B1				
	[Variance =] $\frac{2091}{180} - ("2.95")^2$						
		= 2.914 (s ² =2.930) awrt 2.91 (2.93)					
(b)	The mean is close to the variance						
		(2)	(1)				
(c)	$W \sim Po$	(3)					
(i)	[P(W]]	$(3) = \int I - P(W_{11}, 2) = 0.5768$ awrt 0.577	M1 A1				
(ii)	P(4 <	< W < 8 = P(W, 7) - P(W, 4) or P(W=5) + P(W=6) + P(W=7)	M1				
		= 0.1728 awrt 0.173	A1				
(1)	V N(2	1.21)	(4)				
(d)	X~N(2	1,21)	BI				
	$\int \mathbf{P}(X \cdot$	<19) = $\left[P \left(Z_{,,,} \frac{18.5 - 21}{\sqrt{2}} \right) \right] = -0.5455 \right]$ or					
	L \	$\sqrt{21}$	M1M1A1				
	$\int \mathbf{P}(\mathbf{X})$	$> 23) =]P(Z = \frac{23.5 - 21}{100}) [= 0.5455]$					
		$\sqrt{23} \int \int \left[\frac{2}{\sqrt{21}} \right] \left[-\frac{1}{\sqrt{21}} \int \left[-\frac{1}{\sqrt{21}} \right] \left[$					
		= 0.2912 (calc 0.29268)*	A1*cso				
			(5)				
(e)	$Y \sim B(2)$	13, "0.29")	M1				
	$\left[P(Y=5) = \right]^{13} C_5 ("0.29")^5 (1-"0.29")^8 = 0.170465 \text{ (calc } 0.17317) \text{awrt } 0.17 \right]$						
			(3)				
		Notes	Total 16				
(a)	B1						
		cao allow exact equivalents					
	M1	Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$					
	M1	Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71					
	M1 A1cso	Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93)	values				
(b)	M1 A1cso B1	Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close'	values				
(b) (c)(i)	M1 A1cso B1 M1	Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close' for 1–P(W,, 2) or 1–0.4232	values				
(b) (c)(i)	M1 A1cso B1 M1 A1	Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close' for 1–P(W,, 2) or 1–0.4232 awrt 0.577	values				
(b) (c)(i)	M1 A1cso B1 M1 A1 M1	Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close' for 1–P(W,, 2) or 1–0.4232 awrt 0.577 for P(W,, 7)–P(W,, 4) or P(W=5)+P(W=6)+P(W=7)	values				
(b) (c)(i) (ii)	M1 A1cso B1 M1 A1 M1	Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close' for 1–P(W,, 2) or 1–0.4232 awrt 0.577 for P(W,, 7)–P(W,, 4) or P(W=5)+P(W=6)+P(W=7) or 0.9881 – 0.8153 or 0.1008 + 0.0504 + 0.0216	values				
(b) (c)(i) (ii)	M1 A1cso B1 M1 A1 M1 A1 A1	Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close' for 1–P(W,, 2) or 1–0.4232 awrt 0.577 for P(W,, 7)–P(W,, 4) or P(W=5)+P(W=6)+P(W=7) or 0.9881 – 0.8153 or 0.1008 + 0.0504 + 0.0216 awrt 0.173	values				
(b) (c)(i) (ii) (d)	M1 A1cso B1 M1 A1 M1 A1 M1 A1 B1	Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close' for 1–P(W,, 2) or 1–0.4232 awrt 0.577 for P(W,, 7)–P(W,, 4) or P(W=5)+P(W=6)+P(W=7) or 0.9881 – 0.8153 or 0.1008 + 0.0504 + 0.0216 awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression.	a values				
(b) (c)(i) (ii) (d)	M1 A1cso B1 M1 A1 M1 A1 B1 M1	The formula formula for the second s	values 3, 23.5, 24,				
(b) (c)(i) (ii) (d)	M1 A1cso B1 M1 A1 A1 A1 M1 A1 M1 A1 M1 A1 M1 M1 M1	cao allow exact equivalents Ft their mean. Using $\frac{\sum fx^2}{180}$ – (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180}$ – (their mean) ² $\right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close' for 1–P(W,, 2) or 1 – 0.4232 awrt 0.577 for P(W,, 7)–P(W,, 4) or P(W=5)+P(W=6)+P(W=7) or 0.9881 – 0.8153 or 0.1008 + 0.0504 + 0.0216 awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression. for standardisation (±) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 2 24.5 for using 19±0.5 or 23±0.5	2 values 3, 23.5, 24,				
(b) (c)(i) (ii) (d)	M1 A1cso B1 M1 A1 M1 A1 B1 M1 M1 M1 A1 M1 A1 M1	The formula of the second sec	2 values 3, 23.5, 24,				
(b) (c)(i) (ii) (d)	M1 A1cso B1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1	The formula of the second sec	values 3, 23.5, 24,				
(b) (c)(i) (ii) (d) (e)	M1 A1cso B1 M1 A1	The case allow exact equivalents Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close' for 1–P(W,, 2) or 1–0.4232 awrt 0.577 for P(W,, 7)–P(W,, 4) or P(W=5)+P(W=6)+P(W=7) or 0.9881 – 0.8153 or 0.1008 + 0.0504 + 0.0216 awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression. for standardisation (±) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 2 24.5 for using 19±0.5 or 23±0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)^8$	a values 3, 23.5, 24,				
(b) (c)(i) (ii) (d) (e)	M1 A1cso B1 M1 A1 A1* M1	cao allow exact equivalents Ft their mean. Using $\frac{\sum fx^2}{180} - (\text{their mean})^2 \text{ or } \frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close' for 1–P(W,, 2) or 1–0.4232 awrt 0.577 for P(W,, 7)–P(W,, 4) or P(W=5)+P(W=6)+P(W=7) or 0.9881 – 0.8153 or 0.1008 + 0.0504 + 0.0216 awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression. for standardisation (±) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 2 24.5 for using 19±0.5 or 23±0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)^8$ ft their 0.29 (Must be 2 sf or better) . Condone B(0.29, 13)	values 3, 23.5, 24,				
(b) (c)(i) (ii) (d) (e)	M1 A1cso B1 M1 A1 A1* M1 A1*	The first equivalents Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$ Allow with a square root – may be implied by awrt 1.71 awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close' for 1–P(W,, 2) or 1–0.4232 awrt 0.577 for P(W,, 7)–P(W,, 4) or P(W=5)+P(W=6)+P(W=7) or 0.9881 – 0.8153 or 0.1008 + 0.0504 + 0.0216 awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression. for standardisation (±) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 2 24.5 for using 19±0.5 or 23±0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)^8$ ft their 0.29 (Must be 2 sf or better). Condone B(0.29, 13) for ${}^{13}C_5(p)^5(1-p)^8$ oe with 0 {}^{13}C_5	a values 3, 23.5, 24,				

Question Number	Scheme						
2 (a)	$\left[P(D < 108) = \right] P\left(Z < \frac{108 - 112.4}{\sigma} \right) = 0.05$						
	$\Rightarrow \frac{108 - 112.4}{\sigma} = -1.6449$						
		$\sigma = 2.6749 \text{ days} \text{ (calc } 2.67501 \text{)} \text{ awrt } 2.67/2.68$	A1				
			(3)				
(b)	$J \sim B($	(25, 0.05)					
	$\left[\mathbb{P}(J \right]$	4) =]1 - P(J, 3) = 1 - 0.9659	M1				
		= 0.0341 (calc 0.034090) awrt 0.0341	A1				
			(2)				
(c)	$T \sim Pc$	$[200 \times "0.0341"] = 6.82$ (calc 6.8181)	M1				
	$\left[\mathbf{P}(T) \right]$	2) = $]1 - P(X, 1) = 1 - (e^{-"6.82"} + e^{-"6.82"} \times "6.82")$	M1				
		= 0.99146 calc (0.99144) awrt 0.991	dA1				
			(3)				
		Notes	Total 8				
(a) (i)	M1	for standardisation using 108(Condone 107.5), 112.4 and σ set equal to z where $1.5 < z $	<2.5				
	M1	for correct equation awrt –1.6449 (Allow awrt 1.6449 if compatible with their equation)					
	A1 awrt 2.67/2.68 NB M1 M0 A1 is possible						
(b)	M1 for $1-P(J_{,,3})$ or $1-0.9659$						
	A1 awrt 0.0341						
(c)	M1	for writing or using correct Poisson model ft their part (b) May be implied by 0.00853(73	3)				
	M1	for writing or using $1 - (e^{-"\lambda"} + e^{-"\lambda"} \times "\lambda")$ where $1 < \lambda < 200$ (may be implied by awrt ().991)				
		Allow $1-P(X, 1)$ if Poisson distribution is stated or used					
	dA1	dep on both method marks being awarded awrt 0.991 (NB Binomial gives awrt 0.992 and if no working shown awrt 0.992 will gain MOM0A0))				
	dA1 (INB Binomial gives awrt 0.992 and it no working shown awrt 0.992 will gain M0M0A0) Allow 0.9915 if both M marks are awarded						

Number	Scheme						
3 (a)	The vacu	um tubes shatter independently	B1				
	The prob	bability of a vacuum tube shattering is constant	B1				
			(2)				
	$C \sim B(15, 0.35)$ plus $[P(C_{3}, 9]) =]0.0142 \text{ or} [P(C_{3}, 10)] =]0.0124 \text{ or}$						
(b)	$[P(C_{,,}, 9) =]0.9876$						
	Critical	Critical regions $[0, ,] C, , 1 \text{ or } 10, , C [, , 15]$					
	[0,,] C	[0, ,] C, , 1 and 10, , C [, , 15] plus					
	P(C., 91	$P = 0.0142 \text{ and } P(C \dots 10) = 0.0124$	AI				
		/	(3)				
(c)	0.0266		B1ft				
			(1)				
(d)	[4 is not	in the CR therefore] there is no evidence to reject Rowan's belief	B1ft				
			(1)				
(e)	$F \sim B(40)$, 0.35)					
	H ₀ : $p = 0$	0.35 and $H_1: p < 0.35$	B1				
	P(F, 8)	P = 0.0303 or CR F , 8	M1A1				
	Sufficier	t evidence to reject H_0 or significant or 8 lies in the Critical region	M1				
	There is	sufficient evidence to support that the proportion of type <i>B</i> vacuum tubes that	A1				
	shatter when exposed to alternating high and low temperatures is less than 35%						
		Nataa	(5) Total 12				
		for one correct reason which must mention tube(s) and shatter/shattering	10tal 12				
(a)	B1						
		or 2 correct reasons not in context					
	B 1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once					
(b)	B1 M1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988					
(b)	B1 M1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CB or $C_{}$ to e.e. T_{-} C < 2	n				
(b)	B1 M1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or C, 10 or e.g. $C < 2$:n				
(b)	B1 M1 M1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> ,, 1 oe e.g. $C < 2$ or upper CR $C \dots 10$ oe e.g. $C > 9$ Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement	n				
(b)	B1 M1 M1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. $C < 2$ or upper CR $C \dots 10$ oe e.g. $C > 9$ Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I	n Do not				
(b)	B1 M1 M1 A1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> ,, 1 oe e.g. $C < 2$ or upper CR $_{C \dots 10}$ oe e.g. $C > 9$ Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement	en Do not				
(b) (c)	B1 M1 M1 A1 B1ft	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. $C < 2$ or upper CR $_{C \dots 10}$ oe e.g. $C > 9$ Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg	en Do not gions" if				
(b) (c)	B1 M1 M1 A1 B1ft	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. $C < 2$ or upper CR <i>C</i> 10 oe e.g. $C > 9$ Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/bis/her or a corr	n Do not gions" if				
(b) (c)	B1 M1 M1 A1 B1ft	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> ,, 1 oe e.g. $C < 2$ or upper CR $C \dots 10$ oe e.g. $C > 9$ Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/his/her or a corr conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidence	Do not gions" if rect ce to				
(b) (c) (d)	B1 M1 M1 A1 B1ft B1ft	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. $C < 2$ or upper CR $_{C \dots 10}$ oe e.g. $_{C > 9}$ Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/his/her or a corr conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidence suggest that the proportion/probability/number/amount (allow 35% as proportion)	Do not gions" if rect ce to of tubes				
(b) (c) (d)	B1 M1 M1 A1 B1ft B1ft	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. $C < 2$ or upper CR <i>C</i> 10 oe e.g. $C > 9$ Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/his/her or a corr conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidence suggest that the proportion/probability/number/amount (allow 35% as proportion) that shatter has changed oe	Do not gions" if rect ce to of tubes				
(b) (c) (d) (e)	B1 M1 M1 A1 B1ft B1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. $C < 2$ or upper CR <i>c</i> 10 oe e.g. $C > 9$ Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/his/her or a corr conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidence suggest that the proportion/probability/number/amount (allow 35% as proportion) that shatter has changed oe for both hypotheses correct in terms of <i>p</i> or π	Do not gions" if rect ce to of tubes				
(b) (c) (d) (e)	B1 M1 M1 A1 B1ft B1ft B1 M1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. <i>C</i> < 2 or upper CR <i>c</i> 10 oe e.g. <i>C</i> > 9 Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/his/her or a corr conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidence suggest that the proportion/probability/number/amount (allow 35% as proportion) that shatter has changed oe for both hypotheses correct in terms of <i>p</i> or π for using or writing P(<i>F</i> , 8) or awrt 0.0303	Do not gions" if rect ce to of tubes				
(b) (c) (d) (e)	B1 M1 M1 A1 B1ft B1ft B1 M1 A1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. <i>C</i> < 2 or upper CR <i>C</i> 10 oe e.g. <i>C</i> > 9 Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/his/her or a corr conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidend suggest that the proportion/probability/number/amount (allow 35% as proportion) that shatter has changed oe for both hypotheses correct in terms of <i>p</i> or π for using or writing P(<i>F</i> , 8) or awrt 0.0303 for awrt 0.0303 or correct CR Allow <i>F</i> , 8 or <i>F</i> < 9 but not if part of a probability state for a correct explained on the in accurate the base probability state for a correct CR Allow <i>F</i> , 8 or <i>F</i> < 9 but not if part of a probability state for a correct explained on the probability for the probability are CD. Leave base	n Do not gions" if rect ce to of tubes tement				
(b) (c) (d) (e)	B1 M1 M1 A1 B1ft B1ft B1 M1 A1 M1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. $C < 2$ or upper CR <i>C</i> 10 oe e.g. $C > 9$ Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/his/her or a corr conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidence suggest that the proportion/probability/number/amount (allow 35% as proportion) that shatter has changed oe for both hypotheses correct in terms of <i>p</i> or π for using or writing $P(F, , 8)$ or awrt 0.0303 for awrt 0.0303 or correct CR Allow <i>F</i> , 8 or <i>F</i> < 9 but not if part of a probability state for a correct conclusion – need not be in context. ft their probability or CR. Ignore hyp do not allow contradicting non contextual comments. May be implied by a correct con-	Do not gions" if rect ce to of tubes tement otheses. textual				
(b) (c) (d) (e)	B1 M1 M1 A1 B1ft B1ft B1 M1 A1 M1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. <i>C</i> < 2 or upper CR <i>c</i> 10 oe e.g. <i>C</i> > 9 Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/his/her or a corr conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidend suggest that the proportion/probability/number/amount (allow 35% as proportion) that shatter has changed oe for both hypotheses correct In terms of <i>p</i> or π for using or writing P(<i>F</i> , 8) or awrt 0.0303 for awrt 0.0303 or correct CR Allow <i>F</i> , 8 or <i>F</i> < 9 but not if part of a probability state for a correct conclusion – need not be in context. If their probability or CR. Ignore hyp do not allow contradicting non contextual comments. May be implied by a correct con statement on its own	Do not gions" if rect ce to of tubes tement tement otheses. textual				
(b) (c) (d) (e)	B1 M1 M1 A1 B1ft B1ft B1 M1 A1 M1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. <i>C</i> < 2 or upper CR <i>c</i> 10 oe e.g. <i>C</i> > 9 Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/his/her or a corr conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidend suggest that the proportion/probability/number/amount (allow 35% as proportion) that shatter has changed oe for a writing $P(F, , 8)$ or awrt 0.0303 for a writ 0.0303 or correct CR Allow <i>F</i> , 8 or <i>F</i> < 9 but not if part of a probability sta for a correct conclusion – need not be in context. ft their probability or CR. Ignore hyp do not allow contradicting non contextual comments. May be implied by a correct con statement on its own for a correct conclusion – must be in context, with words highlighted in bold. ft their p	Do not gions" if rect ce to of tubes tement tement otheses. textual robability				
(b) (c) (d) (e)	B1M1M1A1B1ftB1ftM1A1M1A1M1	for 2 correct reasons which must mention tube(s) and shatter/shattering at least once for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see for lower CR or <i>C</i> , 1 oe e.g. <i>C</i> > 9 Allow other notation and any letter(s) for CR Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). I allow CR written as a probability statement for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg seen. If no probabilities for their CR given then the answer must be 0.0266 for a correct statement consistent with their CR Must mention Rowan/his/her or a corr conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidend suggest that the proportion/probability/number/amount (allow 35% as proportion) that shatter has changed oe for both hypotheses correct in terms of <i>p</i> or π for using or writing P(<i>F</i> , 8) or awrt 0.0303 for a correct conclusion – need not be in context. If their probability or CR. Ignore hyp do not allow contradicting non contextual comments. May be implied by a correct con statement on its own	n Do not gions" if rect ce to of tubes tement tement otheses. textual robability				

Number		
4 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 (2)
(b)	$\begin{bmatrix} p_{1}(2, -2) & 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 21 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 21 \\ 0 & 21 \end{bmatrix}$	
	$[P(G_{n}, 2) =]1 - 2 \times \frac{1}{20} = 0.7] \text{ or } - \times 3 \times [\frac{1}{15} + \frac{1}{3}] \text{ or } \frac{1}{15} \int_{-1}^{1} (g+3) dg = 0.7] \text{ or }$	
	$\frac{1}{30} \times 2^2 + \frac{1}{5} \times 2 + \frac{1}{6} [= 0.7]$ or	
	$\left[P\left(G, \frac{1}{2}\right)\right] = \frac{1}{2} \times 1.5 \times \left(\frac{2}{15} + \frac{3.5}{15}\right) \left[=0.275\right] \text{ or } \frac{1}{15} \int_{-1}^{0.5} (g+3) dg \left[=0.275\right] \text{ or }$	M1
	$\frac{1}{30} \times 0.5^2 + \frac{1}{5} \times 0.5 + \frac{1}{6} \left[= 0.275 \right]$	
	or $\left[P\left(\frac{1}{2}, G, \frac{2}{2}\right) = \right] \frac{1}{2} \times 1.5 \times \left(\frac{7}{30} + \frac{1}{3}\right) \left[= 0.425 \right] \text{ or } \frac{1}{15} \int_{0.5}^{2} (g+3) dg \left[= 0.425 \right] \text{ or}$	
	$\frac{1}{30} \times (2^2 - 0.5^2) + \frac{1}{5} \times (2 - 0.5) [= 0.425]$	
	$\left[P(1,, 2G,, 6 G,, 2) = \right] \frac{P\left(\frac{1}{2}, G, 2\right)}{P(G,, 2)} = \frac{0.425}{0.7} \text{ or } 1 - \frac{0.275}{0.7} \text{ oe} \right]$	M1M1
	$=\frac{17}{28}$ or 0.607 awrt 0.607	A1
		(4)
(c)	$\left[E(H^2) = \right] 2.4 + 12^2 \left[= 146.4 \right]$	M1
	$\left[E(G) = \right] \int_{-1}^{2} \frac{1}{15} \left(g^2 + 3g \right) dg + \int_{2}^{4} \frac{3}{20} g dg$	M1
	$\left[E(G) = \right] \left(\frac{1}{15} \left(\frac{1}{3} g^3 + \frac{3}{2} g^2 \right) \right)_{-1}^2 + \left(\frac{3}{40} g^2 \right)_{-1}^4$	M1
	$=\frac{1}{15}\left(\frac{8}{3}+\frac{12}{2}+\frac{1}{3}-\frac{3}{2}\right)+\left(\frac{48}{40}-\frac{12}{40}\right)[=1.4]$	dM1
	$\left[E \left(2H^2 + 3G + 3 \right) = \right] 2 \times "146.4" + 3 \times "1.4" + 3$	M1
	= 300	A1 (6)
		Total 12

		Notes					
(a)	M1	for correct shape $\left(g = \frac{3}{20}\right)$ must be below $\frac{1}{3}$ with the lines not joining at $x = 2$ and none below/touch the <i>x</i> -axis. Ignore any broken/dotted lines drawn					
	A1	for fully correct graph with labels on the x axis					
(b)	M1	For a correct method to find P(G,, 2) or P $\left(G, \frac{1}{2}\right)$ or P $\left(\frac{1}{2}, G, \frac{2}{2}\right)$ May be implied by $0.7 / \frac{7}{10}$ or $0.425 = \frac{17}{40}$ or $0.275 / \frac{11}{40}$					
	M1	for $\frac{p}{0.7}$ where $0 or \frac{0.425}{q} where 0.425 < q < 1 or 1 - \frac{0.275}{r} where 0.275 < r < 1Allow un-simplified probabilities$					
	M1	For $\frac{P(\frac{1}{2}, G, 2)}{P(G, 2)}$ or a correct ratio of probabilities					
	A1	$\frac{17}{28}$ oe or awrt 0.607					
(c)	M1	for a correct method to find $E(H^2)$					
	M1	for realising $\int x f(x) dx$ on both functions and adding together. Ignore limits					
	M1	for attempting to integrate ($x^n \rightarrow x^{n+1}$) at least one part of $xf(x)$					
	dM1 dep on previous M1 being awarded. For use of correct limits in one part of $xf(x)$ If worl shown, then this may be implied by 0.5 or 0.9 or 1.4. If integration is incorrect then work must be shown.						
	M1 For using $2 \times$ " their $E(H^2)$ "+ 3" their $E(G)$ +3, provided $E(H^2)$ and $E(G)$ have been shown. NB You may have to check their answer if no working is shown for $2 \times$ " their $E(H^2)$ "+ 3" their $E(G)$ +3						
	AI						

Question	Scheme					
Number	<i>(</i>)					
5(a)	$\frac{(a+6)^2}{12} = 27$					
	$\frac{12}{\sqrt{27 \cdot 12}}$ () 12 th () 200 · 0 · 12 th					
	$a = \sqrt{27 \times 12} - 6 \Longrightarrow 12^*$ or $a^2 + 12a - 288 = 0 \Longrightarrow a = 12^*$					
	10 1	2 1 . C 2		(2)		
(b)(i)	$\frac{12-b}{18} =$	$\frac{3}{5}$ or $\frac{b+6}{18} = \frac{2}{5}$		M1		
	10	$\frac{b-12}{b-12}$		Δ1		
		0 - 1.2		(2)		
		"0.6"+6		(2)		
(ii)	P(-6 < W	$V < "0.6") = \frac{0.6 + 6}{18}$		M1		
		11				
		$=\frac{11}{20}$ or 0.3666		A1ft		
		30		(2)		
(c)	Lat C ba	the point where the wood is out and	r is the distance AC	(2)		
(0)		160 m				
	$\frac{x}{2}$ and	$\frac{100-x}{2}$	L+W=80 and LW=975	M1		
	2 (2)				
	$\frac{x}{2} \times \left(\frac{160 - x}{2}\right) = 975 \implies x = 30 \text{ or } 130$ $L(80 - L) = 975 \implies L = 15 \text{ or } 65$					
	P("30" <	$< x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{oe}$	$P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] oe$	dM1		
			5	. 1		
		=	- 0e 8	AI		
				(4)		
		Not	es	Total 10		
(a)	M1	for setting up the correct equation. Do	not allow verification			
	A1*	for an un-simplified expression for <i>a</i> leading to $a = 12$ or for a correct $3TQ = 0$ leading to $a = 12$				
	 	Condone any letter for <i>a</i>				
(b)(1)		for setting up the correct equation				
(ii)	AI M1	Cao oe				
(11)	A 1 ft	ft their value for <i>b</i> provided the answe	er is between 0 and 1			
		it then value for <i>b</i> , provided the answe	(160 - r)			
(c)	M1	For both expressions seen. Allow any	letters e.g. $\frac{y}{2}$ for $\left(\frac{100-x}{2}\right)$			
		May be implied by a correct equation	for the area			
	M1	for a correct equation for area in terms	s of any letter. Condone an inequality			
	dM1 dep on previous method mark awarded. For a fully correct method ft their x values provided					
	to 160 or 80 Do not ISW					

Question Number	Scheme				Marks		
6(a)	8, 11, 14, 17, 20				M1		
	$\begin{bmatrix} P(\text{even }) = \end{bmatrix} \frac{1}{5} \text{ and } \begin{bmatrix} P(\text{odd }) = \end{bmatrix} \frac{4}{5}$ $\begin{bmatrix} P(X = 8) = \end{bmatrix} \left(\frac{4}{5}\right)^4 \text{ or } \begin{bmatrix} P(X = 20) = \end{bmatrix} \left(\frac{1}{5}\right)^4$						M1
							M1
	$\left[P(X=11) = \left] 4 \times \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^3 \text{ or } \left[P(X=17) = \right] 4 \times \left(\frac{4}{5}\right) \left(\frac{1}{5}\right)^3 \right]$						M1
	$\left[\mathbf{P}(X=1)\right]$	$4) = \int {}^{4}C_{2} \times \left(\frac{1}{5}\right)^{2} \left(\frac{4}{5}\right)^{2}$	$\left(\frac{1}{5}\right)^2$				M1
	X	8	11	14	17	20	
	P(X = x)	256	256	96	16		A1
		625	625	625	625	625	
		(0.4096)	(0.4096)	(0.1536)	(0.0256)	(0.0016)	(6)
(h)	1 - (1 - "0)	$(1536'')^n > 0.95$ or	$("0.8464")^n <$	0.05			M1
(0)	1 (1 0						
	<i>n</i> >17.96	or $n > \frac{\log(0.03)}{\log("0.8464)}$	$\frac{1}{4"}$ or $n > \log_{n}$	$_{0.8464''}(0.05)$			M1
	<i>n</i> =18		,				A1
							(3)
			No	tes			Total 9
(a)	M1	For at least 2 scores	correct and no r	nore than 3 inco	orrect		
	M1	for writing or using	$\frac{4}{5}$ and $\frac{1}{5}$. May l	be implied by a	correct probabil	ity	
	M1	for p^4 where 0					
	M1	for $4 \times (1-p) p^3$ where 0					
	M1	for $6 \times (1-p)^2 p^2$ where $0 or probabilities that add to 1 (at least 2 but not more than 5)$					
	A1	for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total					
(b)	M1	for using $1 - (1 - P(Y = 0))^n > 0.95$ allow = instead of $> \ge$. condone $< \le$ or allow for at least 2					
(0)		trials for <i>n</i> between 10 and 20 ft their $P(X = 14)$					
	M1	for <i>n</i> > awrt 17.96 o	$r n > \frac{\log(0.01)}{\log(0.01)}$	$\frac{(5)}{(64'')}$ ft their 0	$0.8464 \text{ or } n > \log n$	g _{"0.8464"} (0.05) ft	their
	1711	0.8464 or for the tw	vo trials for $n = 1$	17 and 18			
		Allow = instead of >	>/≥. condone <td>≤ May be impl</td> <td>ied by a correct</td> <td>answer ft their 0.</td> <td>8464</td>	≤ May be impl	ied by a correct	answer ft their 0.	8464
	A1	Cao (Do not allow a	ny inequality fo	r this mark)			

Question Number	Scheme				Marks	
7(a)	$f(x) = [k](a + 3bx^2 - 4x^3)$					
	$[k](6bx-12x^2)=0$					
	9 <i>b</i> -27=	$=0 \Longrightarrow b = 3$ or 6×10^{-1}	$3 \times 1.5 - 12 \times 1.5^2 = 0 \Longrightarrow \therefore b = 3$; *	A1*	
					(3)	
(b)	a+3-1-	$-4 = 0$ oe $[\Rightarrow a =$	2]		B1*	
					(1)	
(c)		$k(2 \times$	$2+3\times 2^3-2^4-4\Big)=1 \left[\Longrightarrow k\right]$	$=\frac{1}{8}$	M1	
]	$\mathbf{F}(x) = 0.5$	$\mathbf{F}(x) = 4$	$\mathbf{F}(x) = 0$		
	F(1.4	(4) = 0.3988	F(1.4) = 3.1904	F(1.4) = -0.8(096)	M1A1	
	F(1.:	5) = 0.5078	F(1.5) = 4.0625	F(1.5) = 0.06(25)		
	0.399	9<0.5<0.508	3.1904 < 4 < 4.0625	-0.8(096) < 0 < 0.06(25)		
	therefor	re, the median lies	therefore, the median lies	therefore, the median lies	Al	
		een 1.4 and 1.5 $\mathbf{N} \mathbf{A} \mathbf{T} \mathbf{I} \mathbf{V} \mathbf{F} \mathbf{M} 1 \mathbf{A} 1 \mathbf{A} 1$	between 1.4 and 1.5 for $\mathbf{E}(\mathbf{x}) = 0$	between 1.4 and 1.5		
		$\begin{array}{c} \mathbf{NAIIVE} \text{ MIAIAI} \\ \mathbf{N} 1 40 \end{array}$	$\frac{100 \text{ F}(x) = 0}{x - 0.70 \text{ So } x = 1.40 \text{ os } 1}$	<i>c c</i> ?		
	$x_1 = 2.91$	$x_2 = 1.49$	$x_3 = -0.70$ So $x = 1.49$ as 1	$x \leq x \leq 2$	MIAI	
	1.4 < 1.4	9<1.5 [therefore, t	the median lies between 1.4 and	1.5]	dAl	
			Notos		(4) Total 8	
(2)	M1	for attempting to di	$\frac{110105}{\text{fforentiate } r^n \rightarrow r^{n-1} \text{ Condens}}$	missing k (May be implied by ?	nd M1)	
(a)	M1	for correctly differe	$x \rightarrow x$ Condone printing twice and equating to ze	This sing k (May be implied by 2 pro. Condone missing k	NI 1)	
	A1*	substituting $x = 1.5$	leading to a correct linear equation	tion in b leading to $b = 3$		
(b)	B1*	for correctly using $F(1) = 0$ to form an equation in <i>a</i> (May be seen in part (a)) and substitution of $b = 3$				
(c)	M1	for using $F(2) = 1$ to form a correct equation in terms of k only. May be seen in any part of the question				
	M1	For a calculation of F(1.4) or F(1.5) correct to 2 sf (If $F(x) = 0$ used then allow 1 sf or better) (Allow F(1.4) = awrt 3.190k or F(1.5) = awrt 4.063k)				
	A1	For a calculation of	F(1.4) and F(1.5) correct to 2 st	f (If $F(x) = 0$ used then allow 1 st	f or better)	
	dA1	Dependent on previ	ous A1. For a correct compariso	n and conclusion. Allow compa	risons in	
	unii	words e.g. For $F(X)$	= 0 a comment about a change	in sign implies a comparison wi	th 0	
	M1	ALTERNATIVE	n aquation May be implied by	2.01 or 1.40 or 0.70		
	IVII	For $r = 1.49$ ident	ified as being in the range speci	fied by the CDF May be implied	d by rejecting	
	A1	the other solutions	ince as being in the range speen	ned by the CDI. May be implied	a by rejeeting	
	dA1 Dependent on previous A1. For a correct comparison and conclusion					

Examples of other acceptable comparisons for 0.5

F(1.4) < 0.5 < F(1.5), Median lies between the range

F(1.4) < F(median) < F(1.5), so median lies between 1.4 and 1.5 F(1.4) < F(Q2) < F(1.5), therefore Q2 lies between 1.4 and 1.5

F(1.4) < F(m) < F(1.5), 1.4 < m < 1.5

F(1.4) < 0.5, F(1.5) > 0.5, so median of X lies between 1.4 and 1.5

Allow equivalent comparisons for 4 and 0

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom